
CSS

Cascading Style Sheets

Robert Wilensky, UCB12/6/2005

Style Sheets and
HTML/XML, Generally

� Style sheets for HTML were initially advocated to
– provide more power and flexibility
– clean up HTML atrocities:

» the proliferation of tags that encode presentation (e.g.,
<blink>, <i>)

» misuse of tags (e.g., using blank images, paragraphs for
format control)

– Idea was to enhance by adding a simple style language.
� On a separate XML thread: There is no flow

object interpretation of elements, so some way of
associating layout properties with them would be
useful.
– Idea was to develop XML-FO, a standalone flow object

language.

Robert Wilensky, UCB12/6/2005

What Happened
� Adding a simple style language (and reforming HTML) turned

HTML into a low-level flow-object language!
� Think of HTML elements as objects that direct layout, with

pre-defined default properties.
– The style language lets one control details, like font size, color,

etc.
� The style language became general enough that

– one could use it to lay out XML directly
– one could translate XML to HTML+style via XSL

� The style language became even more powerful, introducing
page models, non-visual formatting, and a host of other
things.
– So the need for something like XML-FO was greatly diminished.

� Interesting, many of the ways one uses HTML for layout
didn’t go away.
– E.g., table and list layout semantics are still essential.

Robert Wilensky, UCB12/6/2005

How to Introduce Style into
an XML/HTML document

� Separate style sheets
– Supplied by user, author, as system resources

� Reference
– Add some way for a document to refer to an external

style sheet.
– E.g., we saw the use of processing instructions with XML

to invoke an XSL style sheet; this is also proposed for
CSS.

� In-line
– New elements, attributes defined for “style hooks”.
– Using attributes, or architectural forms, is probably

more in line with the SGML philosophy.
» In general, namespaces would help with attribute name

conflicts, but I haven’t seen any proposal to this effect.

Robert Wilensky, UCB12/6/2005

Implementing Style Within
HTML

� Use a LINK element with rel attribute for
author-suggested specification of style
sheet resources.

� (Partial) LINK definition (4.1 DTD):

<!ELEMENT LINK - O EMPTY>
<!ATTLIST LINK

id ID #IMPLIED -- SGML ID attribute --
href CDATA #IMPLIED -- URL for linked resource --
rel CDATA #IMPLIED -- forward link types --
rev CDATA #IMPLIED -- reverse link types --
title CDATA #IMPLIED -- advisory title string --
type CDATA #IMPLIED -- advisory Internet media type --
media CDATA#IMPLIED -- for rendering on these media --
>

Robert Wilensky, UCB12/6/2005

Example of LINK Element
for Style Sheet Purposes

<LINK TITLE="Stanford" rel="stylesheet"
href="http://www.stanford.edu/stanford.dsssl"
type="application/dsssl">

<LINK title="Cal" rel="stylesheet"
href="http://www.berkeley.edu/cal.css" type="text/css">

<h1>Welcome to my amazing home page!</h1>
If your browser supports style sheets, try this page in Cal and

Stanford styles!!
...
� Multiple LINK elements mean that the client should provide

a choice; recommendation is that title be used to identify
choices, say, in a menu.
– (Anyone support this?)

� type can be used to disregard unsupported notation types
without retrieval.

Robert Wilensky, UCB12/6/2005

STYLE Element
� Used to embed style sheets within a document.
� STYLE definition:
<!ELEMENT style - - CDATA>
<!ATTLIST style

…
type CDATA #REQUIRED -- content type of language--
media CDATA #IMPLIED -- designed for use with --
title CDATA #IMPLIED -- advisory title --
>

� Any number allowed in HEAD elements.

Robert Wilensky, UCB12/6/2005

STYLE Element Example
<HEAD>
<TITLE>Some Document</TITLE>
<STYLE TYPE="text/style-language-x">

...here appears a style sheet in style language x...
</STYLE>
</HEAD>

�Explicit style elements can co-exist
as preferred alternatives with
LINK’ed style sheets.

Robert Wilensky, UCB12/6/2005

Backward Compatibility
Problem

�How to prevent content of STYLE
elements from appearing when old browser
doesn’t support them

� Solution: Style language should allow and
ignore SGML comment characters. E.g.,
instead of previous example:

<STYLE TYPE="text/style-language-x">
<!--
...here appears a style sheet in style language x...

-->
</STYLE>

Robert Wilensky, UCB12/6/2005

Attributes in Support of
Style Sheets

� The following attributes are allowed in most elements, and
are useful re style:
– style - Provides element-specific rendering information
– id – Allows reference to an entity by name
– class - Allows a set of elements to be grouped together for

reference
� The “element identifiers” attributes (i.e., id and class) are

ostensibly general, but
– class is used almost exclusively for style.
– It is recommended that id be used rarely for same.

(There used to be a style entity, but I believe it has vanished:
<!ENTITY % style

"id ID #IMPLIED -- unique id --
class CDATA #IMPLIED -- list of class values --
style CDATA #IMPLIED -- style language statements --">

)

Robert Wilensky, UCB12/6/2005

Attribute Examples
�style:

<P style="... style sheet right here !...">The style sheet
would have to be in the style language previously
declared to be the default; the default style
language can be described using an HTML META
element.

�class:
<P class="special">The style language might say
that all things of class "special" should be a certain
color or size, etc.

Robert Wilensky, UCB12/6/2005

Tags to Help with Style
� There are generic structure elements, DIV and

SPAN.
– DIV demarcates some sequence of elements (i.e., a

“block”).
– SPAN demarcates some portion of text (i.e., “inline”

content).
� More formally:

<!ELEMENT span - - (%inline;)*>
<!ATTLIST span

%attrs; -- all the common attributes -->
<!ELEMENT div - - (%flow;)*>
<!ATTLIST div

% attrs; -- all the common attributes -->

� These are often used just to have something to
attach style specs to.

Robert Wilensky, UCB12/6/2005

SPAN and DIV Examples
<DIV class="section">
<P>The spec states that DIV, together with the "class" attribute, be

used to denote structural elements, like "abstract" or "chapter",
for which HTML doesn’t provide elements.

<P>DIV allows headers, lists, paragraphs, and other DIV elements.
<P>Maybe we want the first three

words here to be set in a special way. SPAN elements can appear
wherever you expect text.

<P>Presumably, somewhere, a style sheet would have to state how the
"init" and "section" classes are to appear. Or, instead, we could
have used the "style" attribute and put a style statement in
directly in with the tags.

</DIV>

Robert Wilensky, UCB12/6/2005

SGML/XML Generally
� External style sheets via processing instructions truest to

SGML philosophy.
� Making STYLE and LINK architectural forms might be more

in the SGML spirit.
� Reserving some attributes just for style:

– While putting style in a given style language directly into
document is suspect, it is probably better than misusing tags.

– CLASS is extremely useful in practice.
– Again, namespaces would help.

� Use of ID in conformance with general SGML practices.
� Introducing elements just for style, e.g., DIV or SPAN, is

bogus. Need another way to refer to document fragments
(XPointer, XLink, etc.)

Robert Wilensky, UCB12/6/2005

Cascading Style Sheets
� Provides a “simple” style language.

– But, naturally, keeps getting more complex.
� Allows multiple style specifications for a given

document.
� A set of rules ("cascading order") determines

precedence and resolves conflicts.
� Status:

– CSS supported as of MS IE 3.0, Netscape 4.0.
– CSS2 now widely supported (at least partially).

» Unlike CSS1, CSS2 can be used by XML (or any other
SGML-like language) as well as HTML.

» Implementations vary in interpretation; backwards
compatibility an issue.

– CSS3 in the works.
» A “color module” is in working draft stage.

Robert Wilensky, UCB12/6/2005

CSS2: Concepts
� A style sheet comprises a set of (one or more) statements.
� A statement is either an at-rule or a rule set (or rule).

– There are a handful of these: @import, @page, @media, @font-
face.

– Seem to handle special cases, each with its own syntax.
» E.g., @import "foo.css"

� A rule comprises a list of selectors and a declaration (or,
declaration block). The declaration provides elements of
style; selectors associate the style with components of the
document.
– A rule can have an optional weight.

� A declaration is a list of property/value pairs.
� There is a well-defined processing model that specifies how

these are used.

Robert Wilensky, UCB12/6/2005

The CSS2 Processing
Model

� Parse the source document and create a document tree.
� Identify the target media type.
� Retrieve all style sheets associated with the document that

are specified for the target media type.
� Annotate the document tree

– by assigning a value to every style property applicable to the
target media type.

– Values may depend on target media type, e.g., speech vs. display
vs. printed pages

� From the annotated document tree, generate a formatting
structure.
– Exactly what this is is implementation-dependent.
– May contain content not in the tree, omit content that is.

� Render the designated presentation.

Robert Wilensky, UCB12/6/2005

The Canvas
� The canvas describes “the space where the

formatting structure is rendered.”
� Canvas has dimensions depending on media

type.
– E.g., 2 dimensions for visual, 4 (!) for sound

(three-dimensional physical space—"sound
surrounds"--and a temporal space)

� The canvas is
– infinite for each dimension of the space
– rendering generally occurs within a finite

region, established by the user agent

Robert Wilensky, UCB12/6/2005

Simple CSS Rule Example

H1, H2 {font-family: helvetica; font-weight: bold;}

selectors

declaration

properties values

Robert Wilensky, UCB12/6/2005

CSS Specifies
�A language for stating selectors
�A set of properties, each with an

associated range of values
– CSS2 defines about 90 properties.

�A formatting model
�Where style sheets can appear, and

how to interpret them
– E.g., defaults, interactions of multiple

sheets, priorities

Robert Wilensky, UCB12/6/2005

Selectors
� Basic selector components include

– all tags
– IDs (i.e., values of ID attributes)
– Classes (i.e., values of CLASS attributes)
– "Pseudo-classes" and "pseudo-elements"

� Combinations
– classes, pseudo-classes and pseudo-elements

within a tag (These and basic selectors are
"simple selectors".)

– Contextual selectors - simple selectors
occurring within simple selectors

Robert Wilensky, UCB12/6/2005

Simple Selector Examples
H1 { color: blue } /* A tag. */
P { font-size: 10pt } /* Another tag. */

/* Note that C-like comments are allowed */
.footnote { font-size: 80% } /*Applies to all elements whose

CLASS attribute has value "footnote", e.g, <DIV
CLASS="footnote"> elements. */

P.critical { color: red } /* Apply the style only to P elements with
CLASS "critical", e.g, <P CLASS=critical> elements */

#xyzzy { font: small sans-serif } /* Apply the style to the element
with the unique ID attribute value "xyzzy", perhaps the element
with start tag <P ID="xyzzy">. */

� Heavy reliance on CLASS, and use of ID altogether, is
discouraged (but I find the former extremely useful).

Robert Wilensky, UCB12/6/2005

Pseudo-class and -elements
�We can cover some common cases in which

there aren’t available structure elements
by pretending that there are.

� Anchor pseudo-classes reflect link status.
� Typographical pseudo-elements pretend

there is an element that might only be
generated at layout time.

Robert Wilensky, UCB12/6/2005

Pseudo-Examples
� Pseudo-classes

A:link { color: red } /* unvisited link */
A:visited { color: blue } /* visited link */
A:active { color: green } /* link currently being pressed */

� Pseudo-elements
P:first-line { font-variant: small-caps; } /* The first-line

pseudo-element will make the first line as formatted of a P element
appear as if it were inside a P:first-line element, with the resulting
effect on style. */

P:first-letter { font-size: 200% } /* first-letter is as if it
surrounds the "first letter" of the element. */

� Combinations
A.footnote:visited { color: yellow } /* class and pseudo-class */
P.urgent:first-line { color: red } /* class and pseudo-element */

Robert Wilensky, UCB12/6/2005

Contextual Selector
Examples

H1 EM { font-variant: small-caps }/* EM elements within
H1 elements should be in SMALL CAPS */

.footnote EM { font-variant: small-caps } /* EM elements
within elements of CLASS "footnote". */

UL { font-size: 90% }
UL UL { font-size: 80% }
UL OL.urgent UL { color: pink } /* "Within" is construed

transitively, so these create ambiguity. */

DIV.chapter P:first-letter { color: blue } /* A pseudo-
element can go at the end of a contextual selector */

Robert Wilensky, UCB12/6/2005

Combining Style
Information

� Ambiguity arises because
– A style may not be explicitly stated.
– Several, possibly conflicting, probably partial,

style sheets might be specified by a document.
– The reader might also supply style sheets.

» How this is done is client-specific.
– Several contextual rules might apply.

� The “cascade” is a procedure that resolves
ambiguities.

Robert Wilensky, UCB12/6/2005

The Cascade
�For each element

– Find all matching declarations.
» If none, inherit from containing element.

� If nothing to inherit, use initial value.
– Prefer “important” over unmarked

declarations.
– Prefer author’s over reader’s (over

browser’s default).
– Prefer more specific over more general

selectors.
– Prefer later over earlier specifications.

Robert Wilensky, UCB12/6/2005

Cascade (continued)
� Inheritance is by document instance structure,

starting at the top-level element.
– Whether a given property is inherited is specific to that

property. E.g., (text) color is inherited; background isn’t.
– Result of applying a percentage value is inherited, not the

percentage.
� “important“” can be specified as

H1 { color: red ! important }
� Authors are given precedence over readers

– but the client is supposed to allow the reader to turn off
any style sheet, including the author’s.

Robert Wilensky, UCB12/6/2005

Specificity
�One selector is more specific than another

if
– it has more id attributes,
– else if it has more class attributes,
– else if it has more tag names.

� Examples:
UL UL is more specific than UL.
UL.urgent is more specific than UL UL UL UL
UL UL.urgent is more specific than UL.urgent.

Robert Wilensky, UCB12/6/2005

Implications of the
Cascade

�Most of the time these rules lead to
reasonably intuitive behavior:
– Specifying just one feature of an element will

most likely change just that feature, preserving
those of the surrounding or of less targeted
specification. E.g.:

.emph { font-weight: bold; }
will probably cause emph class elements to have
the same other font characteristics as the text
around them.

– Referring to someone else’s style sheet and
then listing desired exceptions will resulting in
the proper customization.

Robert Wilensky, UCB12/6/2005

Curious Consequences
� Suppose we have the following rules:

OL LI { list-style: decimal }/* i.e., 1 2 3 ... */
UL LI { list-style: circle } /* i.e., { */
UL.urgent LI { list-style: disk } /* i.e., z */

and write:
<UL class=urgent>

 It is vital that you take the following measures. in order:
 Press the button labeled "open flush value".

Press the button labeled "flush radioactive waste".
thinking this will produce:
z It is vital that you take the following measures. in

order:
1. Press the button labeled "open flush value".
2. Press the button labeled "flush radioactive waste".

� However, the last rule always wins, so we end up using disks in
the ordered list.

Robert Wilensky, UCB12/6/2005

Curious Consequences
(con’t)

� Should be unnecessary to special-case
ordered lists within unorder lists, as there
isn’t really any exception here.

� Recommended fix is to attach rules to list
parents, not to the list elements:

UL.urgent { list-style: circle }
OL { list-style: decimal }

� Then:
– first rule applies to the UL with class urgent
– only the second rule applies to the OL
– no rule applies to any embedded LI

» which will inherit from the surrounding list.

Robert Wilensky, UCB12/6/2005

Curious Consequences
(con’t)

� Might seem as if we could declare properties of,
say, bold text within a footnote by the following:
B.footnote { font-variant: small-caps }
and then say:
<DIV class=footnote>
<P>See also Schlemiel ‘92, ... in CVETCH: Journal of

Cached Fetching
� Doesn’t work implicitly because attributes aren’t

inherited. I.e., would have to say
<P>...<B CLASS=footnote>CVETCH: ...
or use declaration
.footnote B

Robert Wilensky, UCB12/6/2005

Support for Visual
Formatting in CSS2

� A box model:
– Rectangular boxes are generated for elements

in the document tree.
– They are laid out according to a visual

formatting model.
� Boxes have contents, padding, borders, and

margins, each with its own edges and right,
left, top and bottom segments.

Robert Wilensky, UCB12/6/2005

The four areas of the generic CSS
box: content, padding, border, and
margin.

Robert Wilensky, UCB12/6/2005

Boxes (con’t)
� Document elements produce 0 or more

boxes, each of which will typically be
positioned wrt a containing block
– which is generally established by some other

box (actually, by a box’s padding edge.)
� Boxes may also have a "z-index", which

established the layer precedence of
overlapping boxes,

Robert Wilensky, UCB12/6/2005

Boxes and Formatting
� Boxes are basically in-line or block.

– In “normal flow”, block boxes get laid out one after
another vertically,

– In-line boxes get laid out one after another horizontally.
� E.g., a paragraph is a stack of line boxes, each

comprising a series of in-line boxes.
� There are other kinds of boxes:

– Compact and run-in boxes behave like in-line or block
boxes depending on the context.

– Tables also appear to be their own box type, which can be
like in-line or like block.

� Pages are also their own type of box.
� Note: It is important to be able to declare box

type in XML, where elements have no default box-
type.

Robert Wilensky, UCB12/6/2005

Positioning Schemes
� There are really three basic schemes:

– Normal flow
– Floats
– Absolute positioning

� However:
– There is a variant of normal flow, called relative positioning.
– There is a variant of absolute positioning, called fixed

positioning.
� This is confused by the properties set up:

– The position property can have values
static | relative | absolute | fixed

– There is a separate float property.
� These have some complex, but well-specified, interactions.

Robert Wilensky, UCB12/6/2005

Floats
�Box is first laid out according to the

normal flow, then taken out of the
flow and shifted to the left or right
as far as possible.

�Content may flow along the side of a
float.

Robert Wilensky, UCB12/6/2005

Absolute Positioning
�Box assigned an explicit offset with

respect to the containing block.
�Box is removed from the normal flow.

– and hence has no impact on how sibling
boxes are set.

– May obscure other boxes, depending on
the stack levels of the overlapping
boxes.

Robert Wilensky, UCB12/6/2005

Fixed Positioning
� A special case is fixed positioning.

– Containing box is established by the viewport (a
window or other viewing area on the screen
through which users view a document).

– For continuous media, fixed boxes do not move
when the document is scrolled.

– For paged media, boxes with fixed positions are
repeated on every page.

– Fixed positioning a set of boxes is an
alternative to frames in many cases.

Robert Wilensky, UCB12/6/2005

Relative Positioning
� This is just a variant of normal flow, in

which a box is laid out, and then shifted
from where normal layout would place it by
some amount.
– E.g., super/subscripts setting

�No effect on following boxes.
� Since a relative positioned box establishes

a new containing box for its children, it is
sometimes used just for this purpose, with
its contents not shifted.

Robert Wilensky, UCB12/6/2005

Absolute within Relative
Example

<P style="position: relative; left: 10px; margin-right: 10px;">
I used two red hyphens to serve as a change bar. They
will "float" to the left of the line containing THIS
<SPAN style="position: absolute; top: auto; left: -1em; color:

red;">--
word.</P>

Produces:

Robert Wilensky, UCB12/6/2005

Use Positioning, etc., to
Achieve Copyediting Effect

� Consider the following style elements
<STYLE TYPE="text/css">

.strut { font-size: 24pt; position: relative; color: green; }

.anno { font-size: 10pt; position: absolute; top: 0px }
</STYLE>

� in the following example
<P style="position: relative">This is some plain HTML text. We

would like to place an external annotation on it, which is still
hard to do, but we can at least make a span

<span style="font-weight: bold; font-size:

10pt; color: red">
Replace: here is candidate replacement

text
<u>that is marked for replacement</u> as this example

illustrates.

Robert Wilensky, UCB12/6/2005

Example (con’t)
�Will produce the following

Robert Wilensky, UCB12/6/2005

See Examples
�Of boxes and positioning
�Of advanced use of absolute

positioning
�Note: Browsers will disagree on

how to render these.
– Example more or less optimized for

IE.

Robert Wilensky, UCB12/6/2005

Page Boxes
� A page box is just a big box.

– So, it has margins, etc., along with some page-specific
properties.

� When set up, a page box will serve as the
containing box for content occurring within page
breaks.
– E.g.,

@page { size 8.5in 11in; margin: 2cm }
sets up a page as you would expect.

� CSS2 doesn’t say where to break.
– It does say where breaks are allowed.
– Users can stipulating where breaks go.
– CSS2 has a recommended good breaking policy.

Robert Wilensky, UCB12/6/2005

Usage in HTML
� Accommodated via general HTML style

mechanisms mentioned above.
� Imported style sheets allowed inside

elements. E.g.,
<STYLE TYPE="text/css">
<!--
@import url(http://www.theirsite.com/their-style.css);
H1 { color: blue }
-->
</STYLE>

results in a single style sheet in which the
specification for H1 is overridden locally.

Robert Wilensky, UCB12/6/2005

Usage in XML
� Proposal is to link a style sheet to an XML

document is using a processing instruction.
� E.g.:

<?XML:stylesheet type="text/css" href="some-
style.css"?>

<our-tl-element>
<sub-element>
…

� Simple illustration from spec. (works in IE
≥5).

Robert Wilensky, UCB12/6/2005

How Applicable to General
XML DTDs?

�Weak on
– languages with difficult orthography.

�Not as powerful as DSSSL/XSL, but
much simpler.
– Don’t really have to be a programmer to

write a style sheet.
– No ability to transform document.

