
CSS

Cascading Style Sheets

Robert Wilensky, UCB12/6/2005

Style Sheets and
HTML/XML, Generally

Style sheets for HTML were initially advocated to
– provide more power and flexibility
– clean up HTML atrocities:

» the proliferation of tags that encode presentation (e.g.,
<blink>, <i>)

» misuse of tags (e.g., using blank images, paragraphs for
format control)

– Idea was to enhance by adding a simple style language.
On a separate XML thread: There is no flow
object interpretation of elements, so some way of
associating layout properties with them would be
useful.
– Idea was to develop XML-FO, a standalone flow object

language.

Robert Wilensky, UCB12/6/2005

What Happened
Adding a simple style language (and reforming HTML) turned
HTML into a low-level flow-object language!
Think of HTML elements as objects that direct layout, with
pre-defined default properties.
– The style language lets one control details, like font size, color,

etc.
The style language became general enough that
– one could use it to lay out XML directly
– one could translate XML to HTML+style via XSL

The style language became even more powerful, introducing
page models, non-visual formatting, and a host of other
things.
– So the need for something like XML-FO was greatly diminished.

Interesting, many of the ways one uses HTML for layout
didn’t go away.
– E.g., table and list layout semantics are still essential.

Robert Wilensky, UCB12/6/2005

How to Introduce Style into
an XML/HTML document

Separate style sheets
– Supplied by user, author, as system resources

Reference
– Add some way for a document to refer to an external

style sheet.
– E.g., we saw the use of processing instructions with XML

to invoke an XSL style sheet; this is also proposed for
CSS.

In-line
– New elements, attributes defined for “style hooks”.
– Using attributes, or architectural forms, is probably

more in line with the SGML philosophy.
» In general, namespaces would help with attribute name

conflicts, but I haven’t seen any proposal to this effect.

Robert Wilensky, UCB12/6/2005

Implementing Style Within
HTML

Use a LINK element with rel attribute for
author-suggested specification of style
sheet resources.
(Partial) LINK definition (4.1 DTD):

<!ELEMENT LINK - O EMPTY>
<!ATTLIST LINK

id ID #IMPLIED -- SGML ID attribute --
href CDATA #IMPLIED -- URL for linked resource --
rel CDATA #IMPLIED -- forward link types --
rev CDATA #IMPLIED -- reverse link types --
title CDATA #IMPLIED -- advisory title string --
type CDATA #IMPLIED -- advisory Internet media type --
media CDATA#IMPLIED -- for rendering on these media --
>

Robert Wilensky, UCB12/6/2005

Example of LINK Element
for Style Sheet Purposes

<LINK TITLE="Stanford" rel="stylesheet"
href="http://www.stanford.edu/stanford.dsssl"
type="application/dsssl">

<LINK title="Cal" rel="stylesheet"
href="http://www.berkeley.edu/cal.css" type="text/css">

<h1>Welcome to my amazing home page!</h1>
If your browser supports style sheets, try this page in Cal and

Stanford styles!!
...

Multiple LINK elements mean that the client should provide
a choice; recommendation is that title be used to identify
choices, say, in a menu.
– (Anyone support this?)

type can be used to disregard unsupported notation types
without retrieval.

Robert Wilensky, UCB12/6/2005

STYLE Element
Used to embed style sheets within a document.
STYLE definition:

<!ELEMENT style - - CDATA>
<!ATTLIST style

…
type CDATA #REQUIRED -- content type of language--
media CDATA #IMPLIED -- designed for use with --
title CDATA #IMPLIED -- advisory title --
>

Any number allowed in HEAD elements.

Robert Wilensky, UCB12/6/2005

STYLE Element Example
<HEAD>
<TITLE>Some Document</TITLE>
<STYLE TYPE="text/style-language-x">

...here appears a style sheet in style language x...
</STYLE>
</HEAD>

Explicit style elements can co-exist
as preferred alternatives with
LINK’ed style sheets.

Robert Wilensky, UCB12/6/2005

Backward Compatibility
Problem

How to prevent content of STYLE
elements from appearing when old browser
doesn’t support them
Solution: Style language should allow and
ignore SGML comment characters. E.g.,
instead of previous example:

<STYLE TYPE="text/style-language-x">
<!--
...here appears a style sheet in style language x...

-->
</STYLE>

Robert Wilensky, UCB12/6/2005

Attributes in Support of
Style Sheets

The following attributes are allowed in most elements, and
are useful re style:
– style - Provides element-specific rendering information
– id – Allows reference to an entity by name
– class - Allows a set of elements to be grouped together for

reference
The “element identifiers” attributes (i.e., id and class) are
ostensibly general, but

– class is used almost exclusively for style.
– It is recommended that id be used rarely for same.

(There used to be a style entity, but I believe it has vanished:
<!ENTITY % style

"id ID #IMPLIED -- unique id --
class CDATA #IMPLIED -- list of class values --
style CDATA #IMPLIED -- style language statements --">

)

Robert Wilensky, UCB12/6/2005

Attribute Examples
style:
<P style="... style sheet right here !...">The style sheet
would have to be in the style language previously
declared to be the default; the default style
language can be described using an HTML META
element.

class:
<P class="special">The style language might say
that all things of class "special" should be a certain
color or size, etc.

Robert Wilensky, UCB12/6/2005

Tags to Help with Style
There are generic structure elements, DIV and
SPAN.
– DIV demarcates some sequence of elements (i.e., a

“block”).
– SPAN demarcates some portion of text (i.e., “inline”

content).
More formally:

<!ELEMENT span - - (%inline;)*>
<!ATTLIST span

%attrs; -- all the common attributes -->
<!ELEMENT div - - (%flow;)*>
<!ATTLIST div

% attrs; -- all the common attributes -->

These are often used just to have something to
attach style specs to.

Robert Wilensky, UCB12/6/2005

SPAN and DIV Examples
<DIV class="section">
<P>The spec states that DIV, together with the "class" attribute, be

used to denote structural elements, like "abstract" or "chapter",
for which HTML doesn’t provide elements.

<P>DIV allows headers, lists, paragraphs, and other DIV elements.
<P>Maybe we want the first three

words here to be set in a special way. SPAN elements can appear
wherever you expect text.

<P>Presumably, somewhere, a style sheet would have to state how the
"init" and "section" classes are to appear. Or, instead, we could
have used the "style" attribute and put a style statement in
directly in with the tags.

</DIV>

Robert Wilensky, UCB12/6/2005

SGML/XML Generally
External style sheets via processing instructions truest to
SGML philosophy.
Making STYLE and LINK architectural forms might be more
in the SGML spirit.
Reserving some attributes just for style:
– While putting style in a given style language directly into

document is suspect, it is probably better than misusing tags.
– CLASS is extremely useful in practice.
– Again, namespaces would help.

Use of ID in conformance with general SGML practices.
Introducing elements just for style, e.g., DIV or SPAN, is
bogus. Need another way to refer to document fragments
(XPointer, XLink, etc.)

Robert Wilensky, UCB12/6/2005

Cascading Style Sheets
Provides a “simple” style language.
– But, naturally, keeps getting more complex.

Allows multiple style specifications for a given
document.
A set of rules ("cascading order") determines
precedence and resolves conflicts.
Status:
– CSS supported as of MS IE 3.0, Netscape 4.0.
– CSS2 now widely supported (at least partially).

» Unlike CSS1, CSS2 can be used by XML (or any other
SGML-like language) as well as HTML.

» Implementations vary in interpretation; backwards
compatibility an issue.

– CSS3 in the works.
» A “color module” is in working draft stage.

Robert Wilensky, UCB12/6/2005

CSS2: Concepts
A style sheet comprises a set of (one or more) statements.
A statement is either an at-rule or a rule set (or rule).
– There are a handful of these: @import, @page, @media, @font-

face.
– Seem to handle special cases, each with its own syntax.

» E.g., @import "foo.css"
A rule comprises a list of selectors and a declaration (or,
declaration block). The declaration provides elements of
style; selectors associate the style with components of the
document.
– A rule can have an optional weight.

A declaration is a list of property/value pairs.
There is a well-defined processing model that specifies how
these are used.

Robert Wilensky, UCB12/6/2005

The CSS2 Processing
Model

Parse the source document and create a document tree.
Identify the target media type.
Retrieve all style sheets associated with the document that
are specified for the target media type.
Annotate the document tree
– by assigning a value to every style property applicable to the

target media type.
– Values may depend on target media type, e.g., speech vs. display

vs. printed pages
From the annotated document tree, generate a formatting
structure.
– Exactly what this is is implementation-dependent.
– May contain content not in the tree, omit content that is.

Render the designated presentation.

Robert Wilensky, UCB12/6/2005

The Canvas
The canvas describes “the space where the
formatting structure is rendered.”
Canvas has dimensions depending on media
type.
– E.g., 2 dimensions for visual, 4 (!) for sound

(three-dimensional physical space—"sound
surrounds"--and a temporal space)

The canvas is
– infinite for each dimension of the space
– rendering generally occurs within a finite

region, established by the user agent

Robert Wilensky, UCB12/6/2005

Simple CSS Rule Example

H1, H2 {font-family: helvetica; font-weight: bold;}

selectors

declaration

properties values

Robert Wilensky, UCB12/6/2005

CSS Specifies
A language for stating selectors
A set of properties, each with an
associated range of values
– CSS2 defines about 90 properties.
A formatting model
Where style sheets can appear, and
how to interpret them
– E.g., defaults, interactions of multiple

sheets, priorities

Robert Wilensky, UCB12/6/2005

Selectors
Basic selector components include
– all tags
– IDs (i.e., values of ID attributes)
– Classes (i.e., values of CLASS attributes)
– "Pseudo-classes" and "pseudo-elements"

Combinations
– classes, pseudo-classes and pseudo-elements

within a tag (These and basic selectors are
"simple selectors".)

– Contextual selectors - simple selectors
occurring within simple selectors

Robert Wilensky, UCB12/6/2005

Simple Selector Examples
H1 { color: blue } /* A tag. */
P { font-size: 10pt } /* Another tag. */

/* Note that C-like comments are allowed */
.footnote { font-size: 80% } /*Applies to all elements whose

CLASS attribute has value "footnote", e.g, <DIV
CLASS="footnote"> elements. */

P.critical { color: red } /* Apply the style only to P elements with
CLASS "critical", e.g, <P CLASS=critical> elements */

#xyzzy { font: small sans-serif } /* Apply the style to the element
with the unique ID attribute value "xyzzy", perhaps the element
with start tag <P ID="xyzzy">. */

Heavy reliance on CLASS, and use of ID altogether, is
discouraged (but I find the former extremely useful).

Robert Wilensky, UCB12/6/2005

Pseudo-class and -elements
We can cover some common cases in which
there aren’t available structure elements
by pretending that there are.
Anchor pseudo-classes reflect link status.
Typographical pseudo-elements pretend
there is an element that might only be
generated at layout time.

Robert Wilensky, UCB12/6/2005

Pseudo-Examples
Pseudo-classes
A:link { color: red } /* unvisited link */
A:visited { color: blue } /* visited link */
A:active { color: green } /* link currently being pressed */

Pseudo-elements
P:first-line { font-variant: small-caps; } /* The first-line

pseudo-element will make the first line as formatted of a P element
appear as if it were inside a P:first-line element, with the resulting
effect on style. */

P:first-letter { font-size: 200% } /* first-letter is as if it
surrounds the "first letter" of the element. */

Combinations
A.footnote:visited { color: yellow } /* class and pseudo-class */
P.urgent:first-line { color: red } /* class and pseudo-element */

Robert Wilensky, UCB12/6/2005

Contextual Selector
Examples

H1 EM { font-variant: small-caps }/* EM elements within
H1 elements should be in SMALL CAPS */

.footnote EM { font-variant: small-caps } /* EM elements
within elements of CLASS "footnote". */

UL { font-size: 90% }
UL UL { font-size: 80% }
UL OL.urgent UL { color: pink } /* "Within" is construed

transitively, so these create ambiguity. */

DIV.chapter P:first-letter { color: blue } /* A pseudo-
element can go at the end of a contextual selector */

Robert Wilensky, UCB12/6/2005

Combining Style
Information

Ambiguity arises because
– A style may not be explicitly stated.
– Several, possibly conflicting, probably partial,

style sheets might be specified by a document.
– The reader might also supply style sheets.

» How this is done is client-specific.
– Several contextual rules might apply.

The “cascade” is a procedure that resolves
ambiguities.

Robert Wilensky, UCB12/6/2005

The Cascade
For each element
– Find all matching declarations.

» If none, inherit from containing element.
If nothing to inherit, use initial value.

– Prefer “important” over unmarked
declarations.

– Prefer author’s over reader’s (over
browser’s default).

– Prefer more specific over more general
selectors.

– Prefer later over earlier specifications.

Robert Wilensky, UCB12/6/2005

Cascade (continued)
Inheritance is by document instance structure,
starting at the top-level element.
– Whether a given property is inherited is specific to that

property. E.g., (text) color is inherited; background isn’t.
– Result of applying a percentage value is inherited, not the

percentage.
“important“” can be specified as
H1 { color: red ! important }

Authors are given precedence over readers
– but the client is supposed to allow the reader to turn off

any style sheet, including the author’s.

Robert Wilensky, UCB12/6/2005

Specificity
One selector is more specific than another
if
– it has more id attributes,
– else if it has more class attributes,
– else if it has more tag names.

Examples:
UL UL is more specific than UL.
UL.urgent is more specific than UL UL UL UL
UL UL.urgent is more specific than UL.urgent.

Robert Wilensky, UCB12/6/2005

Implications of the
Cascade

Most of the time these rules lead to
reasonably intuitive behavior:
– Specifying just one feature of an element will

most likely change just that feature, preserving
those of the surrounding or of less targeted
specification. E.g.:

.emph { font-weight: bold; }
will probably cause emph class elements to have
the same other font characteristics as the text
around them.

– Referring to someone else’s style sheet and
then listing desired exceptions will resulting in
the proper customization.

Robert Wilensky, UCB12/6/2005

Curious Consequences
Suppose we have the following rules:

OL LI { list-style: decimal }/* i.e., 1 2 3 ... */
UL LI { list-style: circle } /* i.e., */
UL.urgent LI { list-style: disk } /* i.e., */

and write:
<UL class=urgent>

 It is vital that you take the following measures. in order:
 Press the button labeled "open flush value".

Press the button labeled "flush radioactive waste".
thinking this will produce:

 It is vital that you take the following measures. in
order:

1. Press the button labeled "open flush value".
2. Press the button labeled "flush radioactive waste".

However, the last rule always wins, so we end up using disks in
the ordered list.

Robert Wilensky, UCB12/6/2005

Curious Consequences
(con’t)

Should be unnecessary to special-case
ordered lists within unorder lists, as there
isn’t really any exception here.
Recommended fix is to attach rules to list
parents, not to the list elements:

UL.urgent { list-style: circle }
OL { list-style: decimal }

Then:
– first rule applies to the UL with class urgent
– only the second rule applies to the OL
– no rule applies to any embedded LI

» which will inherit from the surrounding list.

Robert Wilensky, UCB12/6/2005

Curious Consequences
(con’t)

Might seem as if we could declare properties of,
say, bold text within a footnote by the following:
B.footnote { font-variant: small-caps }
and then say:
<DIV class=footnote>
<P>See also Schlemiel ‘92, ... in CVETCH: Journal of

Cached Fetching
Doesn’t work implicitly because attributes aren’t
inherited. I.e., would have to say
<P>...<B CLASS=footnote>CVETCH: ...
or use declaration
.footnote B

Robert Wilensky, UCB12/6/2005

Support for Visual
Formatting in CSS2

A box model:
– Rectangular boxes are generated for elements

in the document tree.
– They are laid out according to a visual

formatting model.
Boxes have contents, padding, borders, and
margins, each with its own edges and right,
left, top and bottom segments.

Robert Wilensky, UCB12/6/2005

The four areas of the generic CSS
box: content, padding, border, and
margin.

Robert Wilensky, UCB12/6/2005

Boxes (con’t)
Document elements produce 0 or more
boxes, each of which will typically be
positioned wrt a containing block
– which is generally established by some other

box (actually, by a box’s padding edge.)
Boxes may also have a "z-index", which
established the layer precedence of
overlapping boxes,

Robert Wilensky, UCB12/6/2005

Boxes and Formatting
Boxes are basically in-line or block.
– In “normal flow”, block boxes get laid out one after

another vertically,
– In-line boxes get laid out one after another horizontally.

E.g., a paragraph is a stack of line boxes, each
comprising a series of in-line boxes.
There are other kinds of boxes:
– Compact and run-in boxes behave like in-line or block

boxes depending on the context.
– Tables also appear to be their own box type, which can be

like in-line or like block.
Pages are also their own type of box.
Note: It is important to be able to declare box
type in XML, where elements have no default box-
type.

Robert Wilensky, UCB12/6/2005

Positioning Schemes
There are really three basic schemes:
– Normal flow
– Floats
– Absolute positioning

However:
– There is a variant of normal flow, called relative positioning.
– There is a variant of absolute positioning, called fixed

positioning.
This is confused by the properties set up:
– The position property can have values

static | relative | absolute | fixed
– There is a separate float property.

These have some complex, but well-specified, interactions.

Robert Wilensky, UCB12/6/2005

Floats
Box is first laid out according to the
normal flow, then taken out of the
flow and shifted to the left or right
as far as possible.
Content may flow along the side of a
float.

Robert Wilensky, UCB12/6/2005

Absolute Positioning
Box assigned an explicit offset with
respect to the containing block.
Box is removed from the normal flow.
– and hence has no impact on how sibling

boxes are set.
– May obscure other boxes, depending on

the stack levels of the overlapping
boxes.

Robert Wilensky, UCB12/6/2005

Fixed Positioning
A special case is fixed positioning.
– Containing box is established by the viewport (a

window or other viewing area on the screen
through which users view a document).

– For continuous media, fixed boxes do not move
when the document is scrolled.

– For paged media, boxes with fixed positions are
repeated on every page.

– Fixed positioning a set of boxes is an
alternative to frames in many cases.

Robert Wilensky, UCB12/6/2005

Relative Positioning
This is just a variant of normal flow, in
which a box is laid out, and then shifted
from where normal layout would place it by
some amount.
– E.g., super/subscripts setting

No effect on following boxes.
Since a relative positioned box establishes
a new containing box for its children, it is
sometimes used just for this purpose, with
its contents not shifted.

Robert Wilensky, UCB12/6/2005

Absolute within Relative
Example

<P style="position: relative; left: 10px; margin-right: 10px;">
I used two red hyphens to serve as a change bar. They
will "float" to the left of the line containing THIS
<SPAN style="position: absolute; top: auto; left: -1em; color:

red;">--
word.</P>

Produces:

Robert Wilensky, UCB12/6/2005

Use Positioning, etc., to
Achieve Copyediting Effect

Consider the following style elements
<STYLE TYPE="text/css">

.strut { font-size: 24pt; position: relative; color: green; }

.anno { font-size: 10pt; position: absolute; top: 0px }
</STYLE>

in the following example
<P style="position: relative">This is some plain HTML text. We

would like to place an external annotation on it, which is still
hard to do, but we can at least make a span

<span style="font-weight: bold; font-size:

10pt; color: red">
Replace: here is candidate replacement

text
<u>that is marked for replacement</u> as this example

illustrates.

Robert Wilensky, UCB12/6/2005

Example (con’t)
Will produce the following

Robert Wilensky, UCB12/6/2005

See Examples
Of boxes and positioning
Of advanced use of absolute
positioning
Note: Browsers will disagree on
how to render these.
– Example more or less optimized for

IE.

Robert Wilensky, UCB12/6/2005

Page Boxes
A page box is just a big box.
– So, it has margins, etc., along with some page-specific

properties.
When set up, a page box will serve as the
containing box for content occurring within page
breaks.
– E.g.,

@page { size 8.5in 11in; margin: 2cm }
sets up a page as you would expect.

CSS2 doesn’t say where to break.
– It does say where breaks are allowed.
– Users can stipulating where breaks go.
– CSS2 has a recommended good breaking policy.

Robert Wilensky, UCB12/6/2005

Usage in HTML
Accommodated via general HTML style
mechanisms mentioned above.
Imported style sheets allowed inside
elements. E.g.,

<STYLE TYPE="text/css">
<!--
@import url(http://www.theirsite.com/their-style.css);
H1 { color: blue }
-->
</STYLE>

results in a single style sheet in which the
specification for H1 is overridden locally.

Robert Wilensky, UCB12/6/2005

Usage in XML
Proposal is to link a style sheet to an XML
document is using a processing instruction.
E.g.:
<?XML:stylesheet type="text/css" href="some-

style.css"?>
<our-tl-element>

<sub-element>
…

Simple illustration from spec. (works in IE
≥5).

Robert Wilensky, UCB12/6/2005

How Applicable to General
XML DTDs?

Weak on
– languages with difficult orthography.
Not as powerful as DSSSL/XSL, but
much simpler.
– Don’t really have to be a programmer to

write a style sheet.
– No ability to transform document.

